Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Procedia Comput Sci ; 218: 1660-1667, 2023.
Article in English | MEDLINE | ID: covidwho-2263867

ABSTRACT

Segmentation of pneumonia lesions from Lung CT images has become vital for diagnosing the disease and evaluating the severity of the patients during the COVID-19 pandemic. Several AI-based systems have been proposed for this task. However, some low-contrast abnormal zones in CT images make the task challenging. The researchers investigated image preprocessing techniques to accomplish this problem and to enable more accurate segmentation by the AI-based systems. This study proposes a COVID-19 Lung-CT segmentation system based on histogram-based non-parametric region localization and enhancement (LE) methods prior to the U-Net architecture. The COVID-19-infected lung CT images were initially processed by the LE method, and the infected regions were detected and enhanced to provide more discriminative features to the deep learning segmentation methods. The U-Net is trained using the enhanced images to segment the regions affected by COVID-19. The proposed system achieved 97.75%, 0.85, and 0.74 accuracy, dice score, and Jaccard index, respectively. The comparison results suggested that the use of LE methods as a preprocessing step in CT Lung images significantly improved the feature extraction and segmentation abilities of the U-Net model by a 0.21 dice score. The results might lead to implementing the LE method in segmenting varied medical images.

2.
Procedia computer science ; 218:1660-1667, 2023.
Article in English | EuropePMC | ID: covidwho-2218698

ABSTRACT

Segmentation of pneumonia lesions from Lung CT images has become vital for diagnosing the disease and evaluating the severity of the patients during the COVID-19 pandemic. Several AI-based systems have been proposed for this task. However, some low-contrast abnormal zones in CT images make the task challenging. The researchers investigated image preprocessing techniques to accomplish this problem and to enable more accurate segmentation by the AI-based systems. This study proposes a COVID-19 Lung-CT segmentation system based on histogram-based non-parametric region localization and enhancement (LE) methods prior to the U-Net architecture. The COVID-19-infected lung CT images were initially processed by the LE method, and the infected regions were detected and enhanced to provide more discriminative features to the deep learning segmentation methods. The U-Net is trained using the enhanced images to segment the regions affected by COVID-19. The proposed system achieved 97.75%, 0.85, and 0.74 accuracy, dice score, and Jaccard index, respectively. The comparison results suggested that the use of LE methods as a preprocessing step in CT Lung images significantly improved the feature extraction and segmentation abilities of the U-Net model by a 0.21 dice score. The results might lead to implementing the LE method in segmenting varied medical images.

3.
Mathematical Problems in Engineering ; : 1-14, 2021.
Article in English | Academic Search Complete | ID: covidwho-1538000

ABSTRACT

This paper proposes a Convolutional Neural Networks (CNN) based model for the diagnosis of COVID-19 and non-COVID-19 viral pneumonia diseases. These diseases affect and damage the human lungs. Early diagnosis of patients infected by the virus can help save the patient's life and prevent the further spread of the virus. The CNN model is used to help in the early diagnosis of the virus using chest X-ray images, as it is one of the fastest and most cost-effective ways of diagnosing the disease. We proposed two convolutional neural networks (CNN) models, which were trained using two different datasets. The first model was trained for binary classification with one of the datasets that only included pneumonia cases and normal chest X-ray images. The second model made use of the knowledge learned by the first model using transfer learning and trained for 3 class classifications on COVID-19, pneumonia, and normal cases based on the second dataset that included chest X-ray (CXR) images. The effect of transfer learning on model constriction has been demonstrated. The model gave promising results in terms of accuracy, recall, precision, and F1_score with values of 98.3%, 97.9%, 98.3%, and 98.0%, respectively, on the test data. The proposed model can diagnose the presence of COVID-19 in CXR images;hence, it will help radiologists make diagnoses easily and more accurately. [ FROM AUTHOR] Copyright of Mathematical Problems in Engineering is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL